Top
Back: ImageGroup
Forward: InvariantQ
FastBack: ainvar_lib
FastForward: stratify_lib
Up: rinvar_lib
Top: Singular 2-0-4 Manual
Contents: Table of Contents
Index: Index
About: About this document

D.6.3.5 InvariantRing

Procedure from library rinvar.lib (see rinvar_lib).

Usage:
InvariantRing(G, Gact [, opt]); ideal G, Gact; int opt

Purpose:
compute generators of the invariant ring of G w.r.t. the action 'Gact'

Assume:
G is a finite group and 'Gact' is a linear action.

Return:
polynomial ring over a simple extension of the ground field of the basering (the extension might be trivial), containing the ideals 'invars' and 'groupid' and the poly 'newA'
- 'invars' contains the algebra-generators of the invariant ring - 'groupid' is the ideal of G in the new ring
- 'newA' if the minpoly changes this is the new representation of the algebraic number, otherwise it is set to 'a'.

Note:
the delivered ring might have a different minimal polynomial

Example:
 
LIB "rinvar.lib";
ring B = 0, (s(1..2), t(1..2)), dp;
ideal G = -s(1)+s(2)^3, s(1)^4-1;
ideal action = s(1)*t(1), s(2)*t(2);
def R = InvariantRing(std(G), action);
setring R;
invars;
==> invars[1]=t(1)^4
==> invars[2]=t(1)^3*t(2)^3
==> invars[3]=t(1)^2*t(2)^6
==> invars[4]=t(1)*t(2)^9
==> invars[5]=t(2)^12


Top Back: ImageGroup Forward: InvariantQ FastBack: ainvar_lib FastForward: stratify_lib Up: rinvar_lib Top: Singular 2-0-4 Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 2-0-4, May 2003, generated by texi2html.