Top
Back: orbit_variety
Forward: image_of_variety
FastBack: Invariant theory
FastForward: ainvar_lib
Up: finvar_lib
Top: Singular 2-0-4 Manual
Contents: Table of Contents
Index: Index
About: About this document

D.6.1.30 relative_orbit_variety

Procedure from library finvar.lib (see finvar_lib).

Usage:
relative_orbit_variety(I,F,s);
I: an <ideal> invariant under the action of a group, F: a 1xm <matrix> defining the invariant ring of this group, s: a <string> giving a name for a new ring

Return:
a Groebner basis (type <ideal>, named G) for the ideal defining the relative orbit variety with respect to I in the new ring (named s)

Theory:
A Groebner basis of the ideal of algebraic relations of the invariant ring generators is calculated, then one of the basis elements plus the ideal generators. The variables of the original ring are eliminated and the polynomials that are left define the relative orbit variety with respect to I.

Example:
 
LIB "finvar.lib";
ring R=0,(x,y,z),dp;
matrix F[1][3]=x+y+z,xy+xz+yz,xyz;
ideal I=x2+y2+z2-1,x2y+y2z+z2x-2x-2y-2z,xy2+yz2+zx2-2x-2y-2z;
string newring="E";
relative_orbit_variety(I,F,newring);
print(G);
==> 27*y(3)^6-513*y(3)^4+33849*y(3)^2-784,
==> 1475*y(2)+9*y(3)^4-264*y(3)^2+736,
==> 8260*y(1)+9*y(3)^5-87*y(3)^3+5515*y(3)
basering;
==> //   characteristic : 0
==> //   number of vars : 3
==> //        block   1 : ordering lp
==> //                  : names    y(1) y(2) y(3) 
==> //        block   2 : ordering C


Top Back: orbit_variety Forward: image_of_variety FastBack: Invariant theory FastForward: ainvar_lib Up: finvar_lib Top: Singular 2-0-4 Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 2-0-4, May 2003, generated by texi2html.