Top
Back: triMNewton
Forward: EGCD
FastBack: ntsolve_lib
FastForward: Visualization
Up: Symbolic-numerical solving
Top: Singular 2-0-4 Manual
Contents: Table of Contents
Index: Index
About: About this document

D.7.5 zeroset_lib

Library:
zeroset.lib
Purpose:
Procedures For Roots and Factorization
Author:
Thomas Bayer, email: tbayer@mathematik.uni-kl.de
http://wwwmayr.informatik.tu-muenchen.de/personen/bayert/ Current Adress: Institut fuer Informatik, TU Muenchen

Overview:
Algorithms for finding the zero-set of a zero-dim. ideal in Q(a)[x_1,..,x_n], Roots and Factorization of univariate polynomials over Q(a)[t] where a is an algebraic number. Written in the frame of the diploma thesis (advisor: Prof. Gert-Martin Greuel) 'Computations of moduli spaces of semiquasihomogeneous singularities and an implementation in Singular'. This library is meant as a preliminary extension of the functionality of Singular for univariate factorization of polynomials over simple algebraic extensions in characteristic 0.
Subprocedures with postfix 'Main' require that the ring contains a variable 'a' and no parameters, and the ideal 'mpoly', where 'minpoly' from the basering is stored.

Procedures:

D.7.5.1 EGCD  gcd over an algebraic extension field of Q
D.7.5.2 Factor  factorization of f over an algebraic extension field
D.7.5.3 Quotient  quotient q of f w.r.t. g (in f = q*g + remainder)
D.7.5.4 Remainder  remainder of the division of f by g
D.7.5.5 Roots  computes all roots of f in an extension field of Q
D.7.5.6 SQFRNorm  norm of f (f must be squarefree)
D.7.5.7 ZeroSet  zero-set of the 0-dim. ideal I
Auxiliary procedures:
D.7.5.8 EGCDMain  gcd over an algebraic extension field of Q
D.7.5.9 FactorMain  factorization of f over an algebraic extension field
D.7.5.10 InvertNumberMain  inverts an element of an algebraic extension field
D.7.5.11 QuotientMain  quotient of f w.r.t. g
D.7.5.12 RemainderMain  remainder of the division of f by g
D.7.5.13 RootsMain  computes all roots of f, might extend the ground field
D.7.5.14 SQFRNormMain  norm of f (f must be squarefree)
D.7.5.15 ContainedQ  f in data ?
D.7.5.16 SameQ  a == b (list a,b)


Top Back: triMNewton Forward: EGCD FastBack: ntsolve_lib FastForward: Visualization Up: Symbolic-numerical solving Top: Singular 2-0-4 Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 2-0-4, May 2003, generated by texi2html.