Top
Back: is_injective
Forward: is_bijective
FastBack: Commutative algebra
FastForward: elim_lib
Up: algebra_lib
Top: Singular 2-0-4 Manual
Contents: Table of Contents
Index: Index
About: About this document

D.4.1.7 is_surjective

Procedure from library algebra.lib (see algebra_lib).

Usage:
is_surjective(phi); phi map to basering, or ideal defining it

Return:
an integer, 1 if phi is surjective, 0 if not

Note:
The algorithm returns 1 iff all the variables of the basering are contained in the polynomial subalgebra generated by the polynomials defining phi. Hence, if the basering has local or mixed ordering or if the preimage ring is a quotient ring (in which case the map may not be well defined) then the return value 1 means
"surjectivity" in this sense.

Example:
 
LIB "algebra.lib";
ring R = 0,(x,y,z),dp;
ideal i = x, y, x2-y3;
map phi = R,i;                    // a map from R to itself, z->x2-y3
is_surjective(phi);
==> 0
qring Q = std(ideal(z-x37));
map psi = R, x,y,x2-y3;           // the same map to the quotient ring
is_surjective(psi);
==> 1
ring S = 0,(a,b,c),dp;
map psi = R,ideal(a,a+b,c-a2+b3); // a map from R to S,
is_surjective(psi);               // x->a, y->a+b, z->c-a2+b3
==> 1


Top Back: is_injective Forward: is_bijective FastBack: Commutative algebra FastForward: elim_lib Up: algebra_lib Top: Singular 2-0-4 Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 2-0-4, May 2003, generated by texi2html.