|
D.7.2.6 fglm_solve
Procedure from library solve.lib (see solve_lib).
- Usage:
- fglm_solve(i [, p] ); i ideal, p integer
- Assume:
- the ground field has char 0.
- Return:
- a list of numbers, the complex roots of i;
p>0: gives precision of complex numbers in decimal digits (default:
p=30).
- Note:
- The procedure uses a standard basis of i to determine all complex
roots of i.
It creates a ring rC with the same number of variables but with
complex coefficients (and precision p).
Example:
| LIB "solve.lib";
ring r = 0,(x,y),lp;
// compute the intersection points of two curves
ideal s= x2 + y2 - 10, x2 + xy + 2y2 - 16;
fglm_solve(s,10);
==> // name of new ring: rC
==> // list of roots: rlist
rlist;
==> [1]:
==> [1]:
==> 2.8284271247
==> [2]:
==> 1.4142135624
==> [2]:
==> [1]:
==> -2.8284271247
==> [2]:
==> -1.4142135624
==> [3]:
==> [1]:
==> 1
==> [2]:
==> -3
==> [4]:
==> [1]:
==> -1
==> [2]:
==> 3
|
|